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Abstract. An approach to the calculation of static dielectric constants of the(AC)m(BC)n
ultrathin superlattices (SL) composed of III–V or II–VI semiconductors is presented. These SL
are formally considered to result from artificial ordering of alternative A (B) atoms in the initial
crystalline structure (ICS)—the bulk solid solution AxB1−xC with x = m/(m+ n). According
to this viewpoint, the SL dielectric constants are expressed in terms of those of the ICS, and
variations depending on the superperiod and degree of ordering. The changes in dielectric
constants are calculated on the basis of phenomenological Landau theory of second-order phase
transitions, which takes into account thermodynamic instability of the SL. We consider [001]-
oriented SL withm+ n = 3.

1. Introduction

As is well known, artificial superstructures that are composed of alternate layers of two
different isomorphic semiconductors possess unique physical properties, different from those
of the usual bulk crystalline compounds. In a superlattice with thicknesses of layersd1 and
d2, the appearance of a new strict periodd = d1 + d2 along the direction perpendicular to
the layers results in additional dimensional quantization of the SL quasiparticle spectra, as
well as anisotropy of the SL macroscopic physical properties. For instance, with respect to
an external static electric or long-wavelength (λ� d) electromagnetic field, a SL composed
of optically isotropic materials behaves as an optically uniaxial medium with some effective
properties. In this connection a problem with regard to the calculation of SL dielectric
characteristics as functions of the composition and structural parameters of the SL, such as
the growth direction and the magnitude of the superperiod, has arisen. It has been solved by
Levin [1] and Rytov [2] for thethick SL composed of isotropic alternating materials. The
method allows one to obtain the spatial dispersion of the SL effective dielectric constants
by solving Maxwell’s equations with periodic boundary conditions imposed on the electric
induction and the field components at the interfaces. A simple approach, using also boundary
conditions but not taking into account both the superperiodicity and the spatial dispersion
of the SL dielectric properties, has been developed in [3, 4] for anisotropic layers. Both of
the methods imply that the thickness of the layers should be much greater than the unit-cell
size (dk � ak). With this condition obeyed, every layer can be considered as a continuous
medium that retains the dielectric constants of the individual bulk materials,ε

(k)
ij . As a result,

the SL effective dielectric constants can be expressed in terms of those corresponding to
each of the individual materials:εeffij = f (ε(1)ij , ε(2)ij ).

Considerable progress in the synthesis of semiconductor SL has generated a new class
of these SL—ultrathin SL, with only a few atomic planes in a superperiod (dk ≈ ak). Such
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a technological method of nanoscale engineering as atomic-layer-controlled epitaxy has
permitted the growth of high-quality SL with a precise period, consisting of a controllable
number of alternating atomic planes. Obviously, the concepts of ‘thickness of layer’ and
‘individual bulk dielectric properties’ already have no meaning for these SL. Therefore, none
of the continuous approximation methods mentioned above can be used for calculation of
the effective dielectric properties of these SL.

2. Basic analogies

In this paper an approach to the calculation of effective dielectric constants of layered
structures in the limit of ultrathin SL is proposed. It was used earlier in [5] for the
calculation of SL piezoelectric constants. In what follows, we shall consider a specific
[001]-oriented (AC)m(BC)n SL, where AC and BC are bulk pure compounds of III–
V or II–VI semiconductors with zinc-blende structure. As we shall see, it is useful
to imagine these SL as artificial single crystals. Indeed, they are very similar to the
layered semiconductors (like GaSe and MoS2) or superstructures that often appear as a
result of ordering-type phase transitions in solid alloys. The latter formal analogy is very
important, and will be used below. The point is that the Landau theory of second-order
phase transitions constitutes a powerful and universal instrument, which allows one to
establish the relationship between dielectric tensor components of high- and low-symmetry
phases:εLSij = εHSij +δεij ({Cα}). The variationsδεij ({Cα}) induced by the transition depend
on the order parameter components (OPC){Cα} and some phenomenological coefficients,
which are calculated for the initial high-symmetry phase. As is known [6], these OPC are
the arguments of an incomplete thermodynamic Landau potential, and the rules of their
transformation completely determine the reduction of symmetry under a second-order phase
transition. Landau theory is traditionally used to search for the correspondence between
the dielectric properties of the twoequilibrium phases linked by the phase transition. But
it should be borne in mind that this formalism is correct in a broader sense. That is, it
is suitable for use in the situation where there is anon-equilibriumlow-symmetry phase.
There is only one strict requirement imposed on these two phases: the space group of the
low-symmetry phase should be a subgroup of the space group of the other phase.

According to [7, 8], [001]-oriented artificial superlattices(AC)m(BC)n are non-
equilibrium phases for all(m, n) combinations. Thus, if we can find a relatively simple
and equilibrium crystalline phase such that the SL can be considered in a formal symmetry
sense as a crystalderived from this initial crystalline structure (ICS), we could use the
Landau theory formalism for our purpose, i.e. for calculation of the SL dielectric constants.
It turns out that the completely disordered (random) pseudobinary solid solution AxB1−xC
(with x = m/(m+n)) which is isomorphic to the pure components AC (BC) can be chosen
as the ICS. Obviously, the space group and the system of Wyckoff positions for this mixed
crystal coincide with those for the pure ones (T2

d, and thea-, c-sublattices). We consider
that thec-sublattice of the ICS is occupied entirely by C-type atoms. As to thea-sublattice,
it can be occupied by only the alternative A- and B-type atoms with constant probabilities
pA(rla) = x andpB(rla) = 1− x, wherel enumerates ICS unit cells. Then the simplest
SL can beformally considered to result from the ordering of A (B) atoms overa-positions
of the ICS in the [001] direction. In a general case,m neighbouring (001) planes of thea-
sublattice are occupied mostly by A atoms with variable probabilities along [001],pA(rla),
within the layer, and the nextn planes contain mostly B atoms, also distributed with varying
pB(rla). In addition, we examine a particular case of ordering in which these probabilities
differ for two adjacent layers, but are constant within each of them. An ideal SL is such a
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completely ordered structure. To simplify the notation, we shall represent all of the above
SL by the same formula as is used for the ideal SL. It should be emphasized that we use the
term ‘ordering’ under the convention that it describes a set of SL with different, but fixed
degrees of ordering. Below room temperature, no ordering–disordering process is actually
observed in practice, due to a high activation energy of the thermal interdiffusion [9]. This
means that the degree of ordering is ‘frozen’ at the moment of SL formation. However,
for the sake of simplicity it is convenient to discuss the ‘ordering’ of atoms over the SL
a-sublattice sites.

3. The symmetry of the ordering

For further simplicity, detailed consideration is carried out only for the SL withm + n =
3. This SL differs from the ICS in such a way that one plane with an excess of A- (B-)
type atoms alternates with two planes with excesses of the other (B- (A-) type) atoms. The
probabilities of containing an excess of the B (A) type of atoms for these two adjacent
planes can be equal or different. This leads to two different ordering structures. Ifτ is the
distance between two neighbouring (001) planes of thea-sublattice, then the superperiod
is equal tod = (0, 0, 3τ). The spatial modulation of the probability which represents the
a-sublattice-plane occupation by the alternative atoms can be readily described in terms of
static concentration waves [10]:

δp(rla) = C(q) exp(iq · rla)+ C(−q) exp(−iq · rla). (1)

Herep(rla) is the probability for an(la) site of the ICSa-sublattice to be occupied by an
A (B) atom. In this particular case, the expansion of the modulation in a Fourier series
includes a sole harmonic (wave of ordering), because it completely represents the structural
variations. This harmonic can be characterized by the wavevectorq = (0, 0, 2π/3τ) =
1
3(b1+ b2) where the{bi} are the basis vectors of the ICS reciprocal lattice. It is a solution
of the equationq · d = 2π that results from the requirement of translational invariance:
δp(rla + d) = δp(rla). This q belongs to the1 point of the ICS first Brillouin zone. It is
important that the magnitude ofq is a rational part of the ICS reciprocal-lattice vector. Only
two wavevectors,±q, are used in expression (1). This means that only certain elements
of the ICS space groupg ∈ G±q = Gq ⊕ g0Gq ⊂ GICS are of interest for us. Here
Gq is the wavevector group, andg0q = −q. With respect to the elementsg ∈ G±q , a
couple of wavevectors±q form an irreducible two-arrow star. The complete permutable
co-representation [11]D±q(g) induced by the identical representation of the point group
Hq of the superstructure wavevector [6, 12] is connected with this star. For an arbitrary
element

g =
(
h
/∑

i

liai

)
∈ G±q

the matrices of this co-representation have the following form:(
ξ(g) 0

0 ξ∗(g)

)
if h ∈ Hq , and(

0 ξ(g)

ξ ∗(g) 0

)
if hq = −q. Here ξ(g) = exp[2π i(l1 + l2)/(m + n)]. The set of vectors{ai} is the
ICS lattice basis. Two components of the order parameter,C1 = C(q) andC2 = C(−q),



4578 V Yu Mirovitskii

are transformed according to thisD±q(g). They describe (as is well known [6]) a spatial
symmetry reduction under ordering. It follows from the reality ofδp thatC2 = C∗1. From
the invariance ofδp with respect to the transformation elementsg ∈ GSL, one can obtain
the expression connecting the OPC with the matrices of the co-representation [11]:

Cα =
∑
β

D
±q
αβ (g) Cβ. (2)

Those elementsg ∈ G±q which turn equality (2) into the identity form the SL space group
GSL ⊂ G±q . Only some of the initial translational subgroup elements keepδp invariant.
As a result, the SL basic vectors{Aj } become longer than the initial basic vectors. This
corresponds to(m + n)-fold multiplication of the ICS primitive cell. So, the ordering
results in a complication of the SL primitive cell in comparison with that of the ICS, due
to translational invariance breaking for some sites of thea-sublattice. This is revealed in
a crystal system reduction, also. It can be shown that two different sets of OPC,{C1, C2},
result in different reductions of the group symmetry. In the general case (C1 6= C2), this
group belongs to the orthorhombic C2v crystal system. In the other case (C1 = C2), the
SL has tetragonal D2d symmetry [13]. Thus, a rigorous symmetry connection between the
SL and the ICS is established—namely, that the SL space group is a subgroup of the ICS
space group (T2d). This fact permits one to obtain the relationship between the ICS and the
SL dielectric constants basically within the framework of phenomenological Landau theory
of second-order phase transitions.

4. Thermodynamic potential

It is known [7, 8] that most of the solid solutions AxB1−xC of III–V and II–VI
semiconductors with zinc-blende structure are unstable at low temperatures with respect
to decomposition into the pure components AC+ BC. But they become thermodynamic-
ally stable at temperatures above that of a miscibility gap (T > TMG). For some kinds of
such random alloys, the maximum of the concentration dependenceTMG(x) is even below
room temperature. For example,T maxMG ≈ 60 K for the Ga0.5Al 0.5As solution [7]. Then, for
T > TMG(x) the wave of the ordering can be considered as a ‘frozen’ fluctuation of the
concentration from the equilibrium state. Now, as in Landau theory, we can introduce a
non-equilibrium thermodynamic potential (TP) per multiplied cellVSL:

8SL = 8ICS
0 (x, T )+ δ8(x, T ,E, {Cα})

where 8ICS
0 is a TP of the ICS, andδ8 is the non-equilibrium variation of the TP

induced by a wave of the ordering, and a macroscopic electric fieldE. Apart from
the usual thermodynamic variablesx, T ,E, we introduce intoδ8 a new additional set
of variables{Cα}, i.e. the OPC which describe a deviation from the equilibrium state.
According to a standard procedure, the real scalarδ8 should be expanded in a power
series of invariants composed of the OPC and the field components,{Ei}. There is only one
invariant of the second power in the OPC:I1 = C1C2. The nature of the problem concerned
(threefold multiplication of the ICS primitive cell under ordering) enables us to construct
the polynomials of degree three inCα that remain invariant under pure translations of the
ICS space group (Dzyaloshinskii invariants). One of them,ID = C3

1 + C3
2, is simultan-

eously a complete invariant. Another one,C3
1−C3

2, does not possess this property, because
it is transformed according to the vector irreducible representation A2 of the point group D2d

(i.e. like thez-component of a vector). However, two mixed polynomials, which include
the electric field components and the OPC, are complete invariants:

ICE = i−1(C3
1 − C3

2)E3 I1CE = i−1(C3
1 − C3

2)E1E2
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where i= √−1. Some other mixed invariants,I2CE = (C1C2)E
2
3 andI3CE = (C3

1+C3
2)E

2
3,

are also of interest. Finally, there is one field invariant:IE = E2. So, the first terms in
the expansion of the Landau potential up to second order in the field components and third
order in the OPC have the form

8SL = 8ICS
0 + δ81+ αI2CE + βI1IE + γ

2
I3CE + ν

2
IDIE + µ

2
I1CE − VSL

8π
εICS0 IE. (3)

HereεICS0 is the dielectric constant of the optically isotropic ICS. The part ofδ8 including
only OPC invariants and mixed invariants linear in the fields is denoted asδ81. It is not
used in our further calculations.

We consider the ICS as a non-absorbing and non-conducting medium. In particular,
this is valid for the mixed crystal Al0.5Ga0.5As with a band gap of about 2 eV [14], which,
below room temperature, behaves as a dielectric with respect to electromagnetic radiation
within a definite frequency range.

After introducing polar coordinates viaC1 = ρ exp(iϕ) and C2 = ρ exp(−iϕ), and
substituting them into (3), we obtain

8SL = 8ICS
0 + δ81+ ρ2G1(E)+ ρ3[G2(E) cos 3ϕ +G3(E) sin 3ϕ] − VSL

8π
εICS0 E2 (4)

where

G1(E) = β(E2
1 + E2

2)+ (α + β)E2
3

G2(E) = ν(E2
1 + E2

2)+ (ν + γ )E2
3

G3(E) = µE1E2.

The dielectric constants of the SL are determined from the second complete derivatives of
8SL from (4) with respect to the generalized forces{Ei}:

εSLij = −
4π

VSL

(
∂28SL

∂Ei ∂Ej

)
S

= εICS0 δij + δεij . (5)

The subscriptS denotes that derivatives are taken at zero field, and for a given degree of
ordering,ρ = ρS andϕ = ϕS . Generally speaking, the expressions forεSLij must include the
derivatives ofρ andϕ with respect to the field components. However, as already mentioned
above, interplane diffusion of atoms below room temperature is in practice absent. Assuming
that the fields applied to the SL are not so strong as to substantially affect the rate of the
interplane diffusion, one can neglect the dependencesρ(E) andϕ(E). Then the complete
derivative (5) is reduced to a partial one. Finally, we have from (5), with accuracy up to
the third-order terms inρS ,

δε11 = δε22 = − 8π

VSL
(β + νρS cos 3ϕS)ρ

2
S

δε33 = − 8π

VSL
[(α + β)+ (ν + γ )ρS cos 3ϕS)]ρ

2
S (6)

δε12 = δε21 = − 4π

VSL
µρ3

S sin 3ϕS.

It is clear from the last equality that the translational invariantI1CE plays an extremely
important role in the appearance of new (non-zero) components of the dielectric tensor in
the SL.

In the general case of ordering, asϕS 6= 0 andρS < 1/3, some off-diagonal components
of the dielectric tensor from (6) are non-zero. By using rotation throughπ/4 about the 0Z-
axis, the tensorεSLij can be transformed into a standard form [15], with three different



4580 V Yu Mirovitskii

on-diagonal components as expected for an anisotropic two-axes optical medium which
belongs to the polar orthorhombic crystal class C2v:

ε̃SL11 = εSL11 + εSL12 ε̃SL22 = εSL11 − εSL12 ε̃SL33 = εSL33 .

In the other case (ϕS = 0 andρS = 1/3), i.e. in an ideally ordered SL with the tetragonal
crystal class D2d, the expressions (6) are simplified as for a one-axis optical medium, so the
non-zero components areεSL11 = εSL22 6= εSL33 .

The phenomenological coefficientsα, β, ν, γ , and µ can be calculated by using the
expression for the free energy derived by standard methods of statistical mechanics [16]
applied to a specific model for the random pseudobinary alloy AxB1−xC. However, the
calculation of the TP coefficients using a microscopic alloy model is beyond the scope
of this paper. We only mention here that these coefficients can be expressed in terms of
a small number of combinations of interatomic interaction energies, such as the mixing
energy, that have been calculated for some III–V and II–VI semiconductor alloys in [17]
by a pseudopotential method.

5. Concluding remarks

A new phenomenological method is proposed for calculating effective static dielectric
constants of the ultrathin SL(AC)m(BC)n with only three atomic planes in the superperiod.
For such a SL, layers of alternative materials cannot be considered within the continuous-
medium model that is used for the calculation of the dielectric properties of thick SL.
But it was shown that ultrathin SL can be represented formally as a result of ‘ordering’
of alternative atoms in the initial solid solution AxB1−xC, which is thermodynamically an
equilibrium phase above the miscibility-gap temperature atx = m/(m + n). In contrast,
these SL, as artificial objects, are non-equilibrium structures. Their thermodynamic states
can be described by an incomplete TP, which is a function of the order parameter determining
the deviation from the equilibrium state, as well as a symmetry reduction occurring as a
result of ordering. This viewpoint for the SL provides a natural and convenient way (like in
the Landau theory of ordering-type phase transitions) to express the static dielectric constants
of the SL,εSLij , in terms of those of the ICS,εICS0 , and the variationsδεij depending on the
concentration-wave amplitudeρS and the superperiodd.

Thereby, the complicated initial problem is split into two simpler parts. In the first step,
the proposed phenomenological approach allows one to take account of the symmetry of
the ordering comprehensively. The variations in the dielectric constants are represented as
a power series in the OPC, with some phenomenological coefficients. The importance of
Dzyaloshinskii invariants as regards the appearance of non-zero dielectric tensor components
is demonstrated. We believe that here the value of the ICS dielectric constantεICS0 (x) is
known. For example, it can be measured for real solid solutions. A set of phenomenological
coefficients can be calculated independently of the first step by the well developed methods
of statistical mechanics applied to a concrete model of the solid solution. This second
step towards a complete solution of the problem will be published later [18]. It should
be emphasized that the main goal of this paper was to show (in principle) the necessity
and feasibility of using this approach for the calculation of the SL dielectric properties as
perturbations of the ICS ones.
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